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Abstract : 
In this paper, we present an innovative 

approach to the rule extraction directly from 
experimental numerical data for system identification. 
We discuss how to use a novel class of fuzzy degraded 
hyperellipsoidal composite neural networks 
(FDHECNN's) to extract fuzzy if-then rules. The 
fuzzy rules are defined by hyperellipsoids of which 
principal axes are parallel to the coordinates of the 
input space. These rules are extracted from the 
parameters of the trained FDHECNN's. Based on a 
special learning scheme, the FDHECNN's can involve 
automatically to acquire a set of fuzzy rules for 
approximating the input/output functions of 
considered systems. A highly nonlinear system is 
used to test the proposed neuro-fuzzy systems. 

I. Jntroductioo 

Recently, neural networks and fuzzy systems 
have been widely applied to many fields, yet in 
practice each has its own advantages and 
disadvantages. One of the most appealing aspect of 
neural networks is that they can inductively learn 
concepts from gven experimental data. Furthermore, 
a -layer backpropagation network with sufficient 
hidden nodes has been proven to be a universal 
approximator. Nevertheless, backpropagation 
networks suffer from lengthy training time. Besides, 
it is very difficult to interpret, in physically 
meaningful way, trained networks. That is , the 
knowledge is encoded in the parameters. T b s  kmd of 
knowledge representation is in a sense not acceptable 
to human users. On the other hand, the knowledge 
acquisition is the bottleneck of implementing fuzzy 
systems. Conventional approaches to fuzzy system 
designs either presume that fuzzy rules be gven by 
human experts or involve dividing the input and the 
output space into fuzzy regions. However, in many 
applications, the initial linguistic rules are too crude 
for engineering purposes. On the other hand, the 
major restriction of the second approach is that the 
number of division of each input and output variables 
must be defined in advance. Besides, it is very 
difficult to apply such fuzzy systems to problems in 
which the nuniber of input variables is large. 
Therefore, to overcome the bottleneck of the 
knowledge acquisition, several methods have been 

proposed for extracting fuzzy rules directly from 
numerical data [l], [2], [3]. 

One approach uses back-propagation 
networks to extract fuzzy rules [l]. The antecedent 
and consequent of the fuzzy if-then rules are 
represented by two separate back-propagation 
networks. The knowledge is encoded in the 
parameters of the trained networks. Thus such 
approach does not give a meaningful expression of 
the qualitative aspects of human reasoning. Another 
approach uses Gaussion potential functions for the 
construction of the input membership functions. Then 
the least mean squared (LMS) algorithm or 
back-propagation algorithm is used to train such 
fuzzy neural networks [2], [3]. The major 
disadvantage of this approach is that the initialization 
of weights. The initial values of the parameters are set 
either by the k-means algorithm or in such a way that 
the membersbp functions along each axis can cover 
the operating range totally with suflicient overlapping 
with each other. Input data clustered by the k-means 
algorithm may exhibit very different output 
responses. The initial membershp functions set by 
the second method are decided too heuristically. 
Therefore, such initialization may not really speed up 
the learning process. 

This paper is organized as follows. Section 2 
introduces the novel class of fuzzy degraded 
hyperellipsoidal composite neural networks 
(FDHECNN's) and the hyperrectangular composite 
neural networks (HRCNN's). The training algorithm 
is gven in section 3. The simulation results are 
demonstrated in section 4. Finally some concluding 
remarks are gven in section 5.  

11. Fuzzy Degraded Hyperellipsoidal Composite 
Neural Network 

Ordmarily, fuzzy system designers often 
assume input variables are independent, therefore, the 
membership function is assigned variable by variable. 
Fig. 1 shows an example of conventional fuzzy rule 
partitions. Most of the membership functions are 
assumed to be triangular, trapezoidal or bell-shaped. 
In fact, there is no straightfonvard method for 
choosing membership functions. Either 
trial-and-error tuning or backpropagation algorithm 
is used to find the right number of &vision of inputs 
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Fig. 1 An example of traditional 
fuzzy rule partitions 

Fig. 2 An example of modified 
fuzzy rule partitions 
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and appropriate membership functions. Since it is 
likely that there exist correlations among input 
variables, in this case, the fuzzy rule partitions should 
not be divided variable by variable. The fuzzy regions 
should be arbitrarily shaped, as shown in Fig.2 . A 
neural network approach to fuzzy rule partitions was 
proposed in [l]. However, the extracted knowledge is 
still too implicit. Therefor, we propose to use the 
aggregations of hyperellipsoids to approximate 
arbitrary fuzzy rule partitions. This new scheme is 
implemented as an two-layer FHRCNN. 

The novel class of FDHECNN's is a 
modified version of the class of neural networks with 
quadratic junctions. The inherent architectural 
efficiency of this kind of neural networks uas 
demonstrated in [4], [5], [6] .  A -layer feedforward 
fuzzy degraded hyperellipsoidal composite neural 
network (FDHECNN) shown in Fig.3(a) is described 
bY 

neb(?) = df - 5 (wjirr + b, )', 
1=1 

J 
Out = C wlmj(E) + 8 (3) 

(a) @) 

Fig. 3 The symbolic representations of (a) a 
-layer FDHECNN and (b) a tvmlayer HRCNN 

1. 

Fig. 4 An example of m,@) when d,=O 

where 6, , wj and d, are adaptive weights, SJ is the 
slope value which regulates how fast m&) goes 
down, WJ is the connection weight from hidden node j 
to the output, and 8 is a small real number. If we 
assume d, be zero then the FDHECNN's are 
isomorphic to the radial basis function (RBF) 
networks. The RBF networks using Gaussion 
potential functions have been proven to be universal 
approximators [7], The essential difference between 
the Gaussion function and the mj(5) can be illustrated 
in Fig.4 and 5 . 

Obviously, the m,(?)offers more flexibility. The 
functionality of the m&) can change from the 
Gaussion function depicted in Fig. 4 to the steplike 
depicted in Fig. 5 .  Therefore the FDHECWs offer 
sigtufcantly more flexiblility in approximating 
functions. 

Most fuzzy systems employ "center average 
defuzzifier" 

(4) 

However each fuzzy rule plays a different role in 
contributing to the computation of the crispy final 
output. Therefore, we propose the "weighted center 
average dehzifier" 
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Fig. 5 An example of m,(a 
when 4 is a small number 

Fig. 6 Parameters initialization procedure 

out= c cf,ouljmj(r) + fJ = WJmj(:) + fJ ( 5 )  Ill.HYbrid Training A k W t b m  for FDHJcCN"S 
Fl 

Basically, the FDHECNN's provide more 
where cfJ is the certainty factor of the jth fuzzy rule. flexible local functions (the output functions of 
The weighted center average defuzzifier in a sense hidden nodes) than the FU3F networks do. Therefore, 
takes the linear combination of the firing strengths of it can be shown to be a universal approximator.. The 

J fuzzy rules. A two-layer hyperrectangular proof is gven elsewhere. The performance of a 
composite neural network (HRCNN) shown in FDHECNN depends on the chosen fuzzy 
Fig.3(b) is described by and hyperellipsoids defined by d2 > ~ ( W J X ~  + 

J -t1 

OUtj (~)  =Anet,), 
and 

J 
o u t  = c out j  

F l  
where 

1 x 2 O  
0 x < o  

(7) 

h(, and m,, E R are adjustable weights, x(=[x, , x2 , 
... , \It) is an input pattern, and out,(& : R" +{0,1} 
is an output function for a neural node with 
hyperrectangular neural-* junctions. The 
classification rule extracted from a trained HRCNN 
with k hidden nodes is expressed in the form of 

the connection weights. The fuzzy hyperellipsoids 
should suitably sample the input domain and reflect 
the data distribution. Tradltional approaches used the 
k-means algorithm to cluster input data drectly on 
the input space. They do not take account for the 
output response of each input pattern. Besides, in the 
process of system identfication, input data are often 
chosen to scatter evenly over the input space. The 
k-means algorithm does not reflect any important 
data distribution in these cases. Based on above 
discussions, a hybrid learning algorithm consists of 
the following steps: 

Step 1. Partition the Output Space into Fuzzy 
Regions 

Divide the output into regons (the length of 
these divided intervals can be equal or unequal), 
denoted by SN (Small N), ..., S1 (Small I), CE 
(Center), L1 (Large 1) ,..., LN (Large N). At this time, 
we do not need to assign a fuzzy membership 
function to each regon since the defuzzifier employes 
the "weighted center average defuzzfier". 

Step 2. Transform a Function Approximation 
The domain defined by the antecedent is a Problem into a Pattern Recognition Problem 
hyperrectangle [m, , MJx ... x [ q  , MJ. The 

The orignal input-output pairs are then supervised decision-drected learning (SDDL) 
algorithm is to train HRcNN's. The transformed into quantized input-output pairs, that is, 
algorithm generates a melayer feedfoMrd HRcNN a function approximation problem is converted to a 

needed. A detailed description of the SDDL algorithm SDDL algorithm, (2N+1) two-layer mcN"s 
(hyperrectangular composite neural networks) are is gven in [4], [8]. 

in a 'lanner adding hidden nodes as (2N+l)-cl=s pattern recognition problem. By the 
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created to recognize these pa". After m c i e n t  

Assume there be m,O hidden nodes in the ith trained = 
HRCNN. i=l,.., 2N+1. The m,O hidden nodes are then 
ranked in the order of respective representativeness. 

training (2N+1) sets of hypemangles  are created. 0 2, > 0 [ s(&tp - tP)Wj(-2)$(W#, + bj)& O.W. 

Step 3. Initialize and Update Weights 

0 zj > 0 For output class i ,  the first n, out of mf 

( b j ,  U'', and w j )  of a FDHECNN with 
hidden nodes are selected to initialize the weights y&tp- t p ) w p j ( - 2 q ) ( w ~ ,  + bj)e";'J O.W. 

Step 4. Interpret the trained FDHECNN's (nl+%+ ...+kl) hidden nodes. Fig6 illustrates such 
init~alization scheme. The connection weights. dfi, 
are initialiied to be the mean values of the (2N;l) 
segmented intervals, respectively. 

There are two approaches to adjust the 
weights. The first one is to fix the weights, bj ,dj ,  
and w j ,  and to update only the connection weights, 
w, , in real-time using the recursive least square error 
algorithm. However. it is advantagecm to update all 
wights, bp, U'J, ,wp and y , simultaneously because 
this will significantly improve both the modeling 
capatnlity. The reason why the modeling capability 
can be improved is because the boundary of 
hyperellipsoid can be adjusted to efficiently sample 
the data distribution. 

Assuming the given training data set has p 
entries, we can define an error function as 

Let HE, be the 
hyperellipsoid, ~ ( W M X ,  + bM)2 i; d: . From the trained 

FHRCNN, a set of fuzzy rules can be extracted and 
representedas 

Rulel: IF( is near HE,) 

c1 

THEN the system output is LN 

(17) 

Rule 2N+1: ELSE IF( is near HE2"+,) 
THEN the system output is LP 

lV. Simulation Results 

E = F E p  = 5 :(Outp - tp)2 (11) The plant to be identified is governed by the 
differential equation 

where t, is the pth desired output and Out, is the 
actual output of the FHRCNN with respect to thepth 

backpropagation algorithm, the weights can be +O.lsin(3.1415y(t)) 
adjusted to minimize the total error E. AU weights are 
adapted according to the following equations: 

y(t+l)=(0.8-0.5exp(-g (t)Mt) 
input. By use of the recursive LMS algorithm or -(0.3+0.9e~p(-~(t))~(t) (18) 

where U and y are the input and output of the plant, 
respectively. The training patterns are in 
two-dimensional input space m) and U&)) and 
onedimensional output space. as shown in Fig.7. The 
input parts of the training data are chosen to scatter 
evenly over a square region [-2,2]x[-2,2]. The total 
number of training data is 441. 

First, we partition the output variables into 
five regions, [-2.45. -1.4'l](large negative), [-1.47, 
-0.49](small negative), [-0.49.0.49](near zero). [0.49. 
1.47](small positive) and [1.47, 2.45](large positive). 
In the following step, five HRCNN's were trained to 
recognize the 5-class pattern reoognition problem. 

After training, five HRCNN's with 7,13, 16, 
15 and 8 hidden nodes, corresponding to 5 different 
classes. were created. A FDHECNN with 
(1+2+2+2+3) hidden nodes was trained to ident@ the 
plant. Fig8 depicts the three dimensional 
representatives learned by the FHRCNN's using the 
back-propagation algorithm. The error curve is shown 

(12) 

ZJ > 0 
0. w. 

(13) 

(14) 

(15) 
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Fig. 7 The training patterns presented to 
the FDHECNN for learning 

Fig. 8 Three dimensional representatives 
learned by the FDHECNN 

in Fig.9. The ten extracted fuzzy rules are represented 
as 

IF (y(k),u(k)) is near the ellipse : 
[(y(k)-3. 25)2/ 1 .O@]+ [(u(k)+O. 1 Op/O. 522 ]=1 

THEN y(k+l) is large negative; 

IF (y(k),u(k)) is near the ellipse : 
[(y(k>3. 97)2/2. 76' ]+ [(u(k)+3.3 8p/O. 66' ]=1 

THEN y(k+l) is small negative. 

IF (y(k),u(k)) is near the ellipse : 
[(y(k)+O. 1 1)2/0.632]+ [(~(k)-l.20)~/0.1 72 ]=1 

THEN y(k+l) is small negative. 

IF (y(k),u(k)) is near the ellipse : 

THEN y(k+l) is near zero. 

IF (y(k),u(k)) is near the ellipse : 

THEN y(k+1) is near zero. 

IF Pj(k),u(k)) is near the ellipse : 

[(y(k)+0.7)2/0.432 I+ [(u(k)+0.88)2/0. IS2 ]=1 

[0+1.40)2/0.232]+ [(u(k)+l. 1 0 ) 2 / 0 . 1 ~  ]=1 

[Pj(k)+0.44)2/0.39']+ [(~(k)-2.80)'/0.76~ ]=1 
THEN y(k+l) is small positive; 

IF (y(k),u(k)) is near the ellipse : 
[(y(k)- 1. 35)2/0. 76' ]+ [(u(k)-2. 97)2/0. 742 ]=I 

THEN y(k+l) is small positive. 

IF (y(k),u(k)) is near the ellipse : 
[(y(k)+2. 76)2/0.862]+ [(u(k)-O. 14)2/0.522 ]=I 

THEN y(k+l) Is large positive. 

IF Pj(k),u(k)) is near the ellipse : 
[(y(k)+2.27)2/1.022 ]+ [(~(k)-2.62)~/0.73~ ]=1 

THEN y(k+l) is large positive. 

IF (y(k),u(k)) is near the ellipse : 
[(y(k)+1.29)'/0.21']+ [(~(k)+67.60)~/62.49 ]=I 

THEN y(k+l) is large positive. 

V. Concluding Remarks 

We have proposed a novel approach to the 
rule extraction directly from experimental numerical 
data without interviewing domain experts. This 
approach employs the fuzzy degraded 
hyperellipsoidal composite neural networks as 
building blocks and the LMS or the backpropagation 
algorithm as a training procedure. A special 
preprocessing scheme, transforming a function 
approximation problem into a pattern recogrution 
problem, is proposed to find a set of good 
initializations in order to speed up the learning steps. 
Most of all, the correlations among input features 
have been considered. The fuzzy rule partitions are no 
longer parallel to input features. The aggregation of a 
set of hyperellipsoids are utilized to represent a fuzzy 
rule. 
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